Cytoplasmic localization and chordamesoderm induction in the frog embryo.

نویسنده

  • R L Gimlich
چکیده

The experiments described here were designed to reveal the distribution in the frog early embryo of components which are sufficient for specification of the dorsal structures of the embryonic body axis. The approach was to allow cleavage planes to divide the embryo into various well-defined regions and to transplant cells from each region into recipient embryos which would otherwise fail to form axial structures. Partial or complete body axis development could then be scored by the use of external criteria or histological methods. Recipients were embryos which had been irradiated before first cleavage with ultraviolet light on the vegetal surface. Irradiated embryos display a well-characterized set of deficiencies in the dorsal structures of the body axis, but their development can be 'rescued' toward normalcy in several ways. In particular, transplantation of certain small groups of blastomeres from the normal 32- to 64-cell embryo into irradiated recipients was sufficient to cause partial or complete axis development. Cell groups which could cause rescue were located in the vegetal and equatorial levels of one quadrant of the normal embryo--the quadrant centered on the future dorsal midline. Clonal marking analysis showed that the vegetal-most cells of this quadrant contribute primarily to endodermal structures in normal development. In rescued recipient embryos, these cells also contributed only to the endoderm; the dorsal mesoderm and central nervous system were formed exclusively by host cells which originated near the transplant. Rescue could also result from transplantation of equatorial cells from the dorsal quadrant of the normal embryo. As in normal development, these cells formed primarily the chordamesoderm of the rescued embryo. Host cells were induced to contribute the somitic mesoderm, central nervous system, and other structures which would have been missing but for the presence of the transplanted cells. The frequency and degree of rescue caused by equatorial and vegetal transplants is variable. This was explained by the discovery that the location of components needed for rescue varies among individual embryos without regard to the positions of cleavage planes. This was true even when donor embryos were selected on the basis of a precisely regular pattern of cleavage. In such selected embryos, particular blastomeres make a predictable contribution of progeny to the body axis. Thus it may be that the positions of components which can cause axis formation vary without exact regard to the fate map of prospective areas. The implications of this for the study of cytoplasmic localization in the early embryo are discussed.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis.

Analysis of the spatial pattern of expression of embryo-specific epidermal cytokeratin genes in Xenopus laevis shows earliest activity in the animal pole cells of stage-9 blastulae. These genes are transcribed predominantly in the epithelial or outer ectoderm, to a lesser extent in the sensorial or inner ectoderm, and at low levels if at all in other regions of the embryo. In the early gastrula...

متن کامل

Cell-type.specific expression of ep!dermal cytokeratm genes during gastrulauon of Xenopus laevis

Analysis of the spatial pattern of expression of embryo-specific epidermal cytokeratin genes in Xenopus laevis shows earliest activity in the animal pole cells of stage-9 blastulae. These genes are transcribed predominantly in the epithelial or outer ectoderm, to a lesser extent in the sensorial or inner ectoderm, and at low levels if at all in other regions of the embryo. In the early gastrnla...

متن کامل

Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry.

Left-right asymmetry is a crucial feature of the vertebrate body plan. While much molecular detail of this patterning pathway has been uncovered, the embryonic mechanisms of the initiation of asymmetry, and their evolutionary conservation among species, are still not understood. A popular recent model based on data from mouse embryos suggests extracellular movement of determinants by ciliary mo...

متن کامل

RNA sorting in Xenopus oocytes and embryos.

Cytoplasmic localization of mRNA molecules has emerged as a powerful mechanism for generating spatially restricted gene expression. This process is an important contributor to cell polarity in both somatic cells and oocytes, and can provide the basis for patterning during embryonic development. In vertebrates, this phenomenon is perhaps best documented in the frog, Xenopus laevis, where polarit...

متن کامل

Photoreactivation of a cytoplasmic virus.

Ultraviolet light-inactivated frog virus 3 is efficiently photoreactivated by chick embryo cells. A cellular enzyme is presumably responsible for this repair of viral deoxyribonucleic acid, for the phenomenon is insensitive to an inhibitor of protein synthesis and is not seen in mammalian cells that are known to lack photoreactivating enzyme. Since frog virus 3 is a cytoplasmic virus, functiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of embryology and experimental morphology

دوره 89 Suppl  شماره 

صفحات  -

تاریخ انتشار 1985